Question Paper Code : X 60453

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fifth Semester Electronics and Communication Engineering
EC 2305/EC 55/10144 EC 504 - TRANSMISSION LINES AND WAVEGUIDES
(Regulations 2008/2010)
(Common to PTEC 2305 - Transmission Lines and Waveguides for B.E. (Part-Time) Fourth Semester Electronics and Communication Engineering Regulations 2009)

Time : Three Hours
Maximum : 100 Marks
(Smith chart is to be provided)
Answer ALL questions
PART - A
(10×2=20 Marks)

1. What is constant K filter? Why it is called prototype filter section?
2. A prototype LPF is to be designed which must have $\mathrm{R}_{\mathrm{o}}=600 \Omega, \mathrm{f}_{\mathrm{c}}=1 \mathrm{KHz}$. Find filter elements [L and C].
3. A 50Ω coaxial cable feeds a $75+\mathrm{j} 20 \Omega$ dipole antenna. Find reflection coefficient and standing wave ratio.
4. At a frequency of 80 MHz , a lossless transmission line has a characteristic impedance of 300Ω and a wavelength of 2.5 m . Find L and C.
5. A lossless transmission line has a shunt capacitance of $100 \mathrm{pF} / \mathrm{m}$ and a series inductance of $4 \mu \mathrm{H} / \mathrm{m}$. Determine the characteristic impedance.
6. Write the conditions to be satisfied by a dissipationless line.
7. What is degenerate mode in rectangular waveguide?
8. State the characteristics of TEM waves.
9. A rectangular waveguide has the following dimensions $\mathrm{l}=2.54 \mathrm{~cm}, \mathrm{~b}=1.27 \mathrm{~cm}$ and thickness $=0.127 \mathrm{~cm}$. Calculate the cut-off frequency for TE_{11} mode.
10. What are the dominant mode and degenerate modes in rectangular waveguide?
PART - B
11. a) i) Explain the operation and design of constant-K T section band elimination filter with necessary equations and diagrams.
ii) Design a constant K band pass filter (both T and π-sections) having a design impedance of 600Ω and cut off frequencies of 1 KHz and 4 KHz .
(OR)

X 60453
b) i) Explain the principle and operation of crystal filters with neat diagrams. Write its applications.
ii) Design an m-derived T section low pass filter having cutoff frequency of 1 KHz . Design impedance is 400Ω and the resonant frequency is 1100 Hz .
12. a) i) Obtain the general solution of transmission line.
ii) A telephone cable 64 km long has a resistance of $13 \Omega / \mathrm{km}$ and a capacitance of $0.008 \mu \mathrm{~F} / \mathrm{km}$. Calculate attenuation constant, velocity and wavelength of the line at 1000 Hz .
(OR)
b) i) Explain about different type of transmission line.
ii) Discuss the following : reflection loss and return loss.
13. a) A 30 m long lossless transmission line with $\mathrm{Z}_{0}=50 \Omega$ operating at 2 MHz is terminated with a load $\mathrm{Z}_{\mathrm{L}}=60+40 \mathrm{j} \Omega$. If $\mathrm{U}=0.6 \mathrm{C}$ on the line, find
i) Reflection coefficient.
ii) Standing wave ratio.
iii) Input impedance.
(OR)
b) Discuss the following :
i) Impedance matching.
ii) Single and double stub matching.
14. a) Derive the field expressions for transmission of TE waves between Parallel planes.
(OR)
b) Explain the following :
i) Attenuators.
ii) Characteristic impedance.
15. a) Derive the expression for the field components of TE and TM waves in a circular waveguide.
(OR)
b) i) A rectangular cavity resonator excited by TE_{101} mode at 20 GHz has the dimensions $\mathrm{a}=2 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}$. Calculate the length of the cavity.
ii) With neat diagrams, explain the concept of excitation of modes.

